MakeItFrom.com
Menu (ESC)

C12600 Copper vs. CC755S Brass

Both C12600 copper and CC755S brass are copper alloys. They have 60% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C12600 copper and the bottom bar is CC755S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 56
9.5
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 56
40
Tensile Strength: Ultimate (UTS), MPa 270
390
Tensile Strength: Yield (Proof), MPa 69
250

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1080
820
Melting Onset (Solidus), °C 1030
780
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
27
Electrical Conductivity: Equal Weight (Specific), % IACS 29
30

Otherwise Unclassified Properties

Base Metal Price, % relative 30
23
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
46
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
33
Resilience: Unit (Modulus of Resilience), kJ/m3 21
290
Stiffness to Weight: Axial, points 7.2
7.1
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.2
14
Strength to Weight: Bending, points 10
15
Thermal Diffusivity, mm2/s 39
38
Thermal Shock Resistance, points 9.5
13

Alloy Composition

Aluminum (Al), % 0
0.4 to 0.7
Copper (Cu), % 99.5 to 99.8
59.5 to 61
Iron (Fe), % 0
0.050 to 0.2
Lead (Pb), % 0
1.2 to 1.7
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0.2 to 0.4
0
Silicon (Si), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
35.8 to 38.9