MakeItFrom.com
Menu (ESC)

C12600 Copper vs. Grade C-5 Titanium

C12600 copper belongs to the copper alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C12600 copper and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 56
6.7
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 56
40
Tensile Strength: Ultimate (UTS), MPa 270
1000
Tensile Strength: Yield (Proof), MPa 69
940

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
340
Melting Completion (Liquidus), °C 1080
1610
Melting Onset (Solidus), °C 1030
1560
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 130
7.1
Thermal Expansion, µm/m-K 17
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
36
Density, g/cm3 8.9
4.4
Embodied Carbon, kg CO2/kg material 2.6
38
Embodied Energy, MJ/kg 41
610
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
66
Resilience: Unit (Modulus of Resilience), kJ/m3 21
4200
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 8.2
63
Strength to Weight: Bending, points 10
50
Thermal Diffusivity, mm2/s 39
2.9
Thermal Shock Resistance, points 9.5
71

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 99.5 to 99.8
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.4
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0.2 to 0.4
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4