MakeItFrom.com
Menu (ESC)

C12600 Copper vs. C43000 Brass

Both C12600 copper and C43000 brass are copper alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C12600 copper and the bottom bar is C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 56
3.0 to 55
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 56
42
Shear Strength, MPa 190
230 to 410
Tensile Strength: Ultimate (UTS), MPa 270
320 to 710
Tensile Strength: Yield (Proof), MPa 69
130 to 550

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
1030
Melting Onset (Solidus), °C 1030
1000
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
27
Electrical Conductivity: Equal Weight (Specific), % IACS 29
28

Otherwise Unclassified Properties

Base Metal Price, % relative 30
29
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 41
46
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
20 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 21
82 to 1350
Stiffness to Weight: Axial, points 7.2
7.1
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.2
10 to 23
Strength to Weight: Bending, points 10
12 to 20
Thermal Diffusivity, mm2/s 39
36
Thermal Shock Resistance, points 9.5
11 to 25

Alloy Composition

Copper (Cu), % 99.5 to 99.8
84 to 87
Iron (Fe), % 0
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Phosphorus (P), % 0.2 to 0.4
0
Tin (Sn), % 0
1.7 to 2.7
Zinc (Zn), % 0
9.7 to 14.3
Residuals, % 0
0 to 0.5