MakeItFrom.com
Menu (ESC)

C12600 Copper vs. C70600 Copper-nickel

Both C12600 copper and C70600 copper-nickel are copper alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C12600 copper and the bottom bar is C70600 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 56
3.0 to 34
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 56
46
Shear Strength, MPa 190
190 to 330
Tensile Strength: Ultimate (UTS), MPa 270
290 to 570
Tensile Strength: Yield (Proof), MPa 69
63 to 270

Thermal Properties

Latent Heat of Fusion, J/g 210
220
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1080
1150
Melting Onset (Solidus), °C 1030
1100
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 130
44
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 29
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 30
33
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 41
51
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
6.5 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 21
16 to 290
Stiffness to Weight: Axial, points 7.2
7.7
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.2
9.1 to 18
Strength to Weight: Bending, points 10
11 to 17
Thermal Diffusivity, mm2/s 39
13
Thermal Shock Resistance, points 9.5
9.8 to 19

Alloy Composition

Copper (Cu), % 99.5 to 99.8
84.7 to 90
Iron (Fe), % 0
1.0 to 1.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
9.0 to 11
Phosphorus (P), % 0.2 to 0.4
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5