MakeItFrom.com
Menu (ESC)

C14200 Copper vs. C90400 Bronze

Both C14200 copper and C90400 bronze are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C14200 copper and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.0 to 45
24
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 220 to 370
310
Tensile Strength: Yield (Proof), MPa 75 to 340
180

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
990
Melting Onset (Solidus), °C 1030
850
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 190
75
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
12
Electrical Conductivity: Equal Weight (Specific), % IACS 45
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
34
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.6
3.5
Embodied Energy, MJ/kg 41
56
Embodied Water, L/kg 310
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 83
65
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 500
150
Stiffness to Weight: Axial, points 7.2
7.0
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.8 to 11
10
Strength to Weight: Bending, points 9.1 to 13
12
Thermal Diffusivity, mm2/s 56
23
Thermal Shock Resistance, points 7.9 to 13
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Arsenic (As), % 0.15 to 0.5
0
Boron (B), % 0
0 to 0.1
Copper (Cu), % 99.4 to 99.835
86 to 89
Iron (Fe), % 0
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0.015 to 0.040
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7