MakeItFrom.com
Menu (ESC)

C14510 Copper vs. Grade 5 Titanium

C14510 copper belongs to the copper alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C14510 copper and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 9.1 to 9.6
8.6 to 11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
40
Shear Strength, MPa 180 to 190
600 to 710
Tensile Strength: Ultimate (UTS), MPa 300 to 320
1000 to 1190
Tensile Strength: Yield (Proof), MPa 230 to 250
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
330
Melting Completion (Liquidus), °C 1080
1610
Melting Onset (Solidus), °C 1050
1650
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 360
6.8
Thermal Expansion, µm/m-K 17
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 33
36
Density, g/cm3 8.9
4.4
Embodied Carbon, kg CO2/kg material 2.6
38
Embodied Energy, MJ/kg 42
610
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 29
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
3980 to 5880
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 9.2 to 10
62 to 75
Strength to Weight: Bending, points 11 to 12
50 to 56
Thermal Diffusivity, mm2/s 100
2.7
Thermal Shock Resistance, points 11 to 12
76 to 91

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 99.15 to 99.69
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.4
Lead (Pb), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0.010 to 0.030
0
Tellurium (Te), % 0.3 to 0.7
0
Titanium (Ti), % 0
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Residuals, % 0
0 to 0.4