MakeItFrom.com
Menu (ESC)

C15500 Copper vs. S44401 Stainless Steel

C15500 copper belongs to the copper alloys classification, while S44401 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15500 copper and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 3.0 to 37
21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 190 to 320
300
Tensile Strength: Ultimate (UTS), MPa 280 to 550
480
Tensile Strength: Yield (Proof), MPa 130 to 530
300

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
930
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1080
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 350
22
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 91
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 33
12
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 42
40
Embodied Water, L/kg 360
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 84
90
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 1210
230
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.6 to 17
17
Strength to Weight: Bending, points 11 to 17
18
Thermal Diffusivity, mm2/s 100
5.9
Thermal Shock Resistance, points 9.8 to 20
17

Alloy Composition

Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 99.75 to 99.853
0
Iron (Fe), % 0
75.1 to 80.6
Magnesium (Mg), % 0.080 to 0.13
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0.040 to 0.080
0 to 0.040
Silver (Ag), % 0.027 to 0.1
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8
Residuals, % 0 to 0.2
0