MakeItFrom.com
Menu (ESC)

C17200 Copper vs. Grade 5 Titanium

C17200 copper belongs to the copper alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C17200 copper and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.1 to 37
8.6 to 11
Poisson's Ratio 0.33
0.32
Rockwell C Hardness 23 to 43
33
Shear Modulus, GPa 45
40
Shear Strength, MPa 330 to 780
600 to 710
Tensile Strength: Ultimate (UTS), MPa 480 to 1380
1000 to 1190
Tensile Strength: Yield (Proof), MPa 160 to 1250
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 230
410
Maximum Temperature: Mechanical, °C 280
330
Melting Completion (Liquidus), °C 980
1610
Melting Onset (Solidus), °C 870
1650
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 110
6.8
Thermal Expansion, µm/m-K 18
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 23
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.8
4.4
Embodied Carbon, kg CO2/kg material 9.4
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 500
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5720
3980 to 5880
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 15 to 44
62 to 75
Strength to Weight: Bending, points 16 to 31
50 to 56
Thermal Diffusivity, mm2/s 31
2.7
Thermal Shock Resistance, points 16 to 46
76 to 91

Alloy Composition

Aluminum (Al), % 0 to 0.2
5.5 to 6.8
Beryllium (Be), % 1.8 to 2.0
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 96.1 to 98
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.4
0 to 0.4
Nickel (Ni), % 0.2 to 0.6
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.2
0
Titanium (Ti), % 0
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Residuals, % 0
0 to 0.4