MakeItFrom.com
Menu (ESC)

C17500 Copper vs. ASTM A356 Grade 10

C17500 copper belongs to the copper alloys classification, while ASTM A356 grade 10 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is ASTM A356 grade 10.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.0 to 30
23
Fatigue Strength, MPa 170 to 310
300
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
74
Tensile Strength: Ultimate (UTS), MPa 310 to 860
670
Tensile Strength: Yield (Proof), MPa 170 to 760
430

Thermal Properties

Latent Heat of Fusion, J/g 220
260
Maximum Temperature: Mechanical, °C 220
460
Melting Completion (Liquidus), °C 1060
1470
Melting Onset (Solidus), °C 1020
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 200
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 60
3.9
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 4.7
1.8
Embodied Energy, MJ/kg 73
23
Embodied Water, L/kg 320
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
480
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.7 to 27
24
Strength to Weight: Bending, points 11 to 23
22
Thermal Diffusivity, mm2/s 59
11
Thermal Shock Resistance, points 11 to 29
19

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
2.0 to 2.8
Cobalt (Co), % 2.4 to 2.7
0
Copper (Cu), % 95.6 to 97.2
0
Iron (Fe), % 0 to 0.1
94.4 to 96.6
Manganese (Mn), % 0
0.5 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0