MakeItFrom.com
Menu (ESC)

C18400 Copper vs. C12600 Copper

Both C18400 copper and C12600 copper are copper alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is C12600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 13 to 50
56
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
56
Shear Strength, MPa 190 to 310
190
Tensile Strength: Ultimate (UTS), MPa 270 to 490
270
Tensile Strength: Yield (Proof), MPa 110 to 480
69

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1080
1080
Melting Onset (Solidus), °C 1070
1030
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 320
130
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
29
Electrical Conductivity: Equal Weight (Specific), % IACS 81
29

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 41
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
21
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.5 to 15
8.2
Strength to Weight: Bending, points 10 to 16
10
Thermal Diffusivity, mm2/s 94
39
Thermal Shock Resistance, points 9.6 to 17
9.5

Alloy Composition

Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 97.2 to 99.6
99.5 to 99.8
Iron (Fe), % 0 to 0.15
0
Lithium (Li), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.050
0.2 to 0.4
Silicon (Si), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.7
0
Residuals, % 0 to 0.5
0