MakeItFrom.com
Menu (ESC)

C18700 Copper vs. AISI 416 Stainless Steel

C18700 copper belongs to the copper alloys classification, while AISI 416 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is AISI 416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.0 to 9.6
13 to 31
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 170 to 190
340 to 480
Tensile Strength: Ultimate (UTS), MPa 290 to 330
510 to 800
Tensile Strength: Yield (Proof), MPa 230 to 250
290 to 600

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
680
Melting Completion (Liquidus), °C 1080
1530
Melting Onset (Solidus), °C 950
1480
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 380
30
Thermal Expansion, µm/m-K 17
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
7.0
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.6
1.9
Embodied Energy, MJ/kg 41
27
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
98 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
220 to 940
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.0 to 10
18 to 29
Strength to Weight: Bending, points 11 to 12
18 to 25
Thermal Diffusivity, mm2/s 110
8.1
Thermal Shock Resistance, points 10 to 12
19 to 30

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 98 to 99.2
0
Iron (Fe), % 0
83.2 to 87.9
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Residuals, % 0 to 0.5
0