MakeItFrom.com
Menu (ESC)

C18700 Copper vs. SAE-AISI 1090 Steel

C18700 copper belongs to the copper alloys classification, while SAE-AISI 1090 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is SAE-AISI 1090 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.0 to 9.6
11
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
72
Shear Strength, MPa 170 to 190
470 to 570
Tensile Strength: Ultimate (UTS), MPa 290 to 330
790 to 950
Tensile Strength: Yield (Proof), MPa 230 to 250
520 to 610

Thermal Properties

Latent Heat of Fusion, J/g 210
240
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 950
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 380
50
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.8
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
82 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
730 to 1000
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.0 to 10
28 to 34
Strength to Weight: Bending, points 11 to 12
24 to 27
Thermal Diffusivity, mm2/s 110
13
Thermal Shock Resistance, points 10 to 12
25 to 31

Alloy Composition

Carbon (C), % 0
0.85 to 1.0
Copper (Cu), % 98 to 99.2
0
Iron (Fe), % 0
98 to 98.6
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Residuals, % 0 to 0.5
0