MakeItFrom.com
Menu (ESC)

C19000 Copper vs. S44536 Stainless Steel

C19000 copper belongs to the copper alloys classification, while S44536 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19000 copper and the bottom bar is S44536 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.5 to 50
22
Poisson's Ratio 0.34
0.27
Rockwell B Hardness 45 to 94
79
Shear Modulus, GPa 43
78
Shear Strength, MPa 170 to 390
290
Tensile Strength: Ultimate (UTS), MPa 260 to 760
460
Tensile Strength: Yield (Proof), MPa 140 to 630
280

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 250
21
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 61
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 42
41
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 110
89
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 1730
200
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.2 to 24
17
Strength to Weight: Bending, points 10 to 21
17
Thermal Diffusivity, mm2/s 73
5.6
Thermal Shock Resistance, points 9.3 to 27
16

Alloy Composition

Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 96.9 to 99
0
Iron (Fe), % 0 to 0.1
72.8 to 80
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.9 to 1.3
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.8
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0.15 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.8
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.5
0