MakeItFrom.com
Menu (ESC)

C22000 Bronze vs. ASTM A182 Grade F22V

C22000 bronze belongs to the copper alloys classification, while ASTM A182 grade F22V belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C22000 bronze and the bottom bar is ASTM A182 grade F22V.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.9 to 45
21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
74
Shear Strength, MPa 200 to 300
420
Tensile Strength: Ultimate (UTS), MPa 260 to 520
670
Tensile Strength: Yield (Proof), MPa 69 to 500
460

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
460
Melting Completion (Liquidus), °C 1040
1470
Melting Onset (Solidus), °C 1020
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 190
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 45
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 29
4.2
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
2.5
Embodied Energy, MJ/kg 42
35
Embodied Water, L/kg 310
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.7 to 230
120
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 1110
570
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.1 to 17
24
Strength to Weight: Bending, points 10 to 17
22
Thermal Diffusivity, mm2/s 56
11
Thermal Shock Resistance, points 8.8 to 18
19

Alloy Composition

Boron (B), % 0
0 to 0.0020
Calcium (Ca), % 0
0 to 0.015
Carbon (C), % 0
0.11 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 89 to 91
0 to 0.2
Iron (Fe), % 0 to 0.050
94.6 to 96.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 8.7 to 11
0
Residuals, % 0 to 0.2
0