MakeItFrom.com
Menu (ESC)

C22000 Bronze vs. C87800 Brass

Both C22000 bronze and C87800 brass are copper alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C22000 bronze and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 1.9 to 45
25
Poisson's Ratio 0.33
0.33
Rockwell B Hardness 42 to 81
86
Shear Modulus, GPa 42
42
Tensile Strength: Ultimate (UTS), MPa 260 to 520
590
Tensile Strength: Yield (Proof), MPa 69 to 500
350

Thermal Properties

Latent Heat of Fusion, J/g 200
260
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 1040
920
Melting Onset (Solidus), °C 1020
820
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 190
28
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 45
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
27
Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 42
44
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.7 to 230
130
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 1110
540
Stiffness to Weight: Axial, points 7.2
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.1 to 17
20
Strength to Weight: Bending, points 10 to 17
19
Thermal Diffusivity, mm2/s 56
8.3
Thermal Shock Resistance, points 8.8 to 18
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 89 to 91
80 to 84.2
Iron (Fe), % 0 to 0.050
0 to 0.15
Lead (Pb), % 0 to 0.050
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
3.8 to 4.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 8.7 to 11
12 to 16
Residuals, % 0
0 to 0.5