MakeItFrom.com
Menu (ESC)

C22000 Bronze vs. S35045 Stainless Steel

C22000 bronze belongs to the copper alloys classification, while S35045 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C22000 bronze and the bottom bar is S35045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 1.9 to 45
39
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
78
Shear Strength, MPa 200 to 300
370
Tensile Strength: Ultimate (UTS), MPa 260 to 520
540
Tensile Strength: Yield (Proof), MPa 69 to 500
190

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1040
1390
Melting Onset (Solidus), °C 1020
1340
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 190
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 45
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
34
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 2.6
5.8
Embodied Energy, MJ/kg 42
83
Embodied Water, L/kg 310
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.7 to 230
170
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 1110
94
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.1 to 17
19
Strength to Weight: Bending, points 10 to 17
19
Thermal Diffusivity, mm2/s 56
3.2
Thermal Shock Resistance, points 8.8 to 18
12

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0
0.060 to 0.1
Chromium (Cr), % 0
25 to 29
Copper (Cu), % 89 to 91
0 to 0.75
Iron (Fe), % 0 to 0.050
29.4 to 42.6
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
32 to 37
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 8.7 to 11
0
Residuals, % 0 to 0.2
0