MakeItFrom.com
Menu (ESC)

C23000 Brass vs. S15700 Stainless Steel

C23000 brass belongs to the copper alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C23000 brass and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.9 to 47
1.1 to 29
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 220 to 340
770 to 1070
Tensile Strength: Ultimate (UTS), MPa 280 to 590
1180 to 1890
Tensile Strength: Yield (Proof), MPa 83 to 480
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 990
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 160
16
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 39
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
15
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 43
47
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2 to 260
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 1040
640 to 4660
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 8.9 to 19
42 to 67
Strength to Weight: Bending, points 11 to 18
32 to 43
Thermal Diffusivity, mm2/s 48
4.2
Thermal Shock Resistance, points 9.4 to 20
39 to 63

Alloy Composition

Aluminum (Al), % 0
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 84 to 86
0
Iron (Fe), % 0 to 0.050
69.6 to 76.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
6.5 to 7.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 13.7 to 16
0
Residuals, % 0 to 0.2
0