MakeItFrom.com
Menu (ESC)

C26200 Brass vs. EN 1.4501 Stainless Steel

C26200 brass belongs to the copper alloys classification, while EN 1.4501 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C26200 brass and the bottom bar is EN 1.4501 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 180
27
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 41
80
Shear Strength, MPa 230 to 390
540
Tensile Strength: Ultimate (UTS), MPa 330 to 770
830
Tensile Strength: Yield (Proof), MPa 110 to 490
600

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 140
1100
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 920
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
22
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.1
Embodied Energy, MJ/kg 45
57
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
210
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
870
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 26
29
Strength to Weight: Bending, points 13 to 23
25
Thermal Diffusivity, mm2/s 38
4.0
Thermal Shock Resistance, points 11 to 26
22

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 67 to 70
0.5 to 1.0
Iron (Fe), % 0 to 0.050
57.6 to 65.8
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tungsten (W), % 0
0.5 to 1.0
Zinc (Zn), % 29.6 to 33
0
Residuals, % 0 to 0.3
0