MakeItFrom.com
Menu (ESC)

C27200 Brass vs. Grade 23 Titanium

C27200 brass belongs to the copper alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C27200 brass and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 10 to 50
6.7 to 11
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
40
Shear Strength, MPa 230 to 320
540 to 570
Tensile Strength: Ultimate (UTS), MPa 370 to 590
930 to 940
Tensile Strength: Yield (Proof), MPa 150 to 410
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 130
340
Melting Completion (Liquidus), °C 920
1610
Melting Onset (Solidus), °C 870
1560
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 120
7.1
Thermal Expansion, µm/m-K 20
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
36
Density, g/cm3 8.1
4.4
Embodied Carbon, kg CO2/kg material 2.7
38
Embodied Energy, MJ/kg 45
610
Embodied Water, L/kg 320
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
3430 to 3560
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 13 to 20
58 to 59
Strength to Weight: Bending, points 14 to 19
48
Thermal Diffusivity, mm2/s 37
2.9
Thermal Shock Resistance, points 12 to 20
67 to 68

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 62 to 65
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 0.070
0 to 0.25
Lead (Pb), % 0 to 0.070
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 34.6 to 38
0
Residuals, % 0
0 to 0.4