MakeItFrom.com
Menu (ESC)

C33000 Brass vs. EN 1.4508 Stainless Steel

C33000 brass belongs to the copper alloys classification, while EN 1.4508 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is EN 1.4508 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.0 to 60
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 320 to 520
570
Tensile Strength: Yield (Proof), MPa 110 to 450
260

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 130
1000
Melting Completion (Liquidus), °C 940
1450
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
20
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.0
Embodied Energy, MJ/kg 45
55
Embodied Water, L/kg 320
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
160
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
170
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
20
Strength to Weight: Bending, points 13 to 18
19
Thermal Diffusivity, mm2/s 37
4.1
Thermal Shock Resistance, points 11 to 17
17

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 65 to 68
0
Iron (Fe), % 0 to 0.070
61.2 to 69.9
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0
9.0 to 12
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 30.8 to 34.8
0
Residuals, % 0 to 0.4
0