MakeItFrom.com
Menu (ESC)

C34200 Brass vs. EN 1.0314 Steel

C34200 brass belongs to the copper alloys classification, while EN 1.0314 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C34200 brass and the bottom bar is EN 1.0314 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 3.0 to 17
24 to 25
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 230 to 360
200 to 250
Tensile Strength: Ultimate (UTS), MPa 370 to 650
320 to 400
Tensile Strength: Yield (Proof), MPa 150 to 420
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 910
1470
Melting Onset (Solidus), °C 890
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
53
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 29
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.8
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 45
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 98
68 to 87
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 870
95 to 250
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 22
11 to 14
Strength to Weight: Bending, points 14 to 20
13 to 15
Thermal Diffusivity, mm2/s 37
14
Thermal Shock Resistance, points 12 to 22
10 to 13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0
0 to 0.030
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.1
99.365 to 99.78
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 32 to 36.5
0
Residuals, % 0 to 0.4
0