MakeItFrom.com
Menu (ESC)

C36000 Brass vs. S15700 Stainless Steel

C36000 brass belongs to the copper alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C36000 brass and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 5.8 to 23
1.1 to 29
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
77
Shear Strength, MPa 210 to 310
770 to 1070
Tensile Strength: Ultimate (UTS), MPa 330 to 530
1180 to 1890
Tensile Strength: Yield (Proof), MPa 140 to 260
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
870
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 45
47
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 62
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 340
640 to 4660
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
42 to 67
Strength to Weight: Bending, points 13 to 18
32 to 43
Thermal Diffusivity, mm2/s 37
4.2
Thermal Shock Resistance, points 11 to 18
39 to 63

Alloy Composition

Aluminum (Al), % 0
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 60 to 63
0
Iron (Fe), % 0 to 0.35
69.6 to 76.8
Lead (Pb), % 2.5 to 3.7
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
6.5 to 7.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 32.5 to 37.5
0
Residuals, % 0 to 0.5
0