MakeItFrom.com
Menu (ESC)

C36200 Brass vs. C99400 Brass

Both C36200 brass and C99400 brass are copper alloys. They have 64% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C36200 brass and the bottom bar is C99400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 39
44
Tensile Strength: Ultimate (UTS), MPa 340 to 420
460 to 550
Tensile Strength: Yield (Proof), MPa 130 to 360
230 to 370

Thermal Properties

Latent Heat of Fusion, J/g 170
230
Maximum Temperature: Mechanical, °C 120
200
Melting Completion (Liquidus), °C 900
1070
Melting Onset (Solidus), °C 890
1020
Specific Heat Capacity, J/kg-K 380
400
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
17
Electrical Conductivity: Equal Weight (Specific), % IACS 28
17

Otherwise Unclassified Properties

Base Metal Price, % relative 23
30
Density, g/cm3 8.2
8.7
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 45
45
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 630
230 to 590
Stiffness to Weight: Axial, points 6.9
7.5
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 11 to 14
15 to 17
Strength to Weight: Bending, points 13 to 15
15 to 17
Thermal Shock Resistance, points 11 to 14
16 to 19

Alloy Composition

Aluminum (Al), % 0
0.5 to 2.0
Copper (Cu), % 60 to 63
83.5 to 96.5
Iron (Fe), % 0 to 0.15
1.0 to 3.0
Lead (Pb), % 3.5 to 4.5
0 to 0.25
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
1.0 to 3.5
Silicon (Si), % 0
0.5 to 2.0
Zinc (Zn), % 32.4 to 36.5
0.5 to 5.0
Residuals, % 0
0 to 0.3