MakeItFrom.com
Menu (ESC)

C37000 Muntz Metal vs. C90400 Bronze

Both C37000 Muntz Metal and C90400 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 64% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C37000 Muntz Metal and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 40
24
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 39
41
Tensile Strength: Ultimate (UTS), MPa 400
310
Tensile Strength: Yield (Proof), MPa 160
180

Thermal Properties

Latent Heat of Fusion, J/g 170
190
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 900
990
Melting Onset (Solidus), °C 890
850
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 120
75
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
12
Electrical Conductivity: Equal Weight (Specific), % IACS 30
12

Otherwise Unclassified Properties

Base Metal Price, % relative 23
34
Density, g/cm3 8.1
8.7
Embodied Carbon, kg CO2/kg material 2.7
3.5
Embodied Energy, MJ/kg 45
56
Embodied Water, L/kg 320
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
65
Resilience: Unit (Modulus of Resilience), kJ/m3 120
150
Stiffness to Weight: Axial, points 7.2
7.0
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 14
10
Strength to Weight: Bending, points 15
12
Thermal Diffusivity, mm2/s 39
23
Thermal Shock Resistance, points 13
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 59 to 62
86 to 89
Iron (Fe), % 0 to 0.15
0 to 0.4
Lead (Pb), % 0.8 to 1.5
0 to 0.090
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 36 to 40.2
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7