MakeItFrom.com
Menu (ESC)

C38000 Brass vs. AWS BNi-5

C38000 brass belongs to the copper alloys classification, while AWS BNi-5 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C38000 brass and the bottom bar is AWS BNi-5.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
72
Tensile Strength: Ultimate (UTS), MPa 380
470

Thermal Properties

Latent Heat of Fusion, J/g 170
470
Melting Completion (Liquidus), °C 800
1140
Melting Onset (Solidus), °C 760
1080
Specific Heat Capacity, J/kg-K 380
510
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 22
55
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
8.9
Embodied Energy, MJ/kg 46
130
Embodied Water, L/kg 330
260

Common Calculations

Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
17
Strength to Weight: Bending, points 14
17
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.050
Boron (B), % 0
0 to 0.030
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
18.5 to 19.5
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 55 to 60
0
Iron (Fe), % 0 to 0.35
0
Lead (Pb), % 1.5 to 2.5
0
Nickel (Ni), % 0
69.1 to 71.8
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0
9.8 to 10.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 35.9 to 43.5
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5