MakeItFrom.com
Menu (ESC)

C41500 Brass vs. 3104 Aluminum

C41500 brass belongs to the copper alloys classification, while 3104 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C41500 brass and the bottom bar is 3104 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 2.0 to 42
1.1 to 20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
26
Shear Strength, MPa 220 to 360
110 to 180
Tensile Strength: Ultimate (UTS), MPa 340 to 560
170 to 310
Tensile Strength: Yield (Proof), MPa 190 to 550
68 to 270

Thermal Properties

Latent Heat of Fusion, J/g 200
400
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 1030
650
Melting Onset (Solidus), °C 1010
600
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 120
160
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
41
Electrical Conductivity: Equal Weight (Specific), % IACS 29
130

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 8.7
2.8
Embodied Carbon, kg CO2/kg material 2.8
8.4
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 330
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
1.6 to 60
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
34 to 540
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 11 to 18
17 to 31
Strength to Weight: Bending, points 12 to 17
25 to 37
Thermal Diffusivity, mm2/s 37
64
Thermal Shock Resistance, points 12 to 20
7.6 to 13

Alloy Composition

Aluminum (Al), % 0
95.1 to 98.4
Copper (Cu), % 89 to 93
0.050 to 0.25
Gallium (Ga), % 0
0 to 0.050
Iron (Fe), % 0 to 0.050
0 to 0.8
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0
0.8 to 1.3
Manganese (Mn), % 0
0.8 to 1.4
Silicon (Si), % 0
0 to 0.6
Tin (Sn), % 1.5 to 2.2
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 4.2 to 9.5
0 to 0.25
Residuals, % 0
0 to 0.15