MakeItFrom.com
Menu (ESC)

C42600 Brass vs. ASTM A182 Grade F36

C42600 brass belongs to the copper alloys classification, while ASTM A182 grade F36 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C42600 brass and the bottom bar is ASTM A182 grade F36.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.1 to 40
17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 280 to 470
440
Tensile Strength: Ultimate (UTS), MPa 410 to 830
710
Tensile Strength: Yield (Proof), MPa 220 to 810
490

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
410
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 1010
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
3.4
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.7
Embodied Energy, MJ/kg 48
22
Embodied Water, L/kg 340
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.4 to 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 2970
650
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 13 to 27
25
Strength to Weight: Bending, points 14 to 23
22
Thermal Diffusivity, mm2/s 33
10
Thermal Shock Resistance, points 15 to 29
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0
0.1 to 0.17
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 87 to 90
0.5 to 0.8
Iron (Fe), % 0.050 to 0.2
95 to 97.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0.050 to 0.2
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0.020 to 0.050
0 to 0.030
Silicon (Si), % 0
0.25 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 2.5 to 4.0
0
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 5.3 to 10.4
0
Residuals, % 0 to 0.2
0