MakeItFrom.com
Menu (ESC)

C47000 Brass vs. C94100 Bronze

Both C47000 brass and C94100 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 60% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C47000 brass and the bottom bar is C94100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
92
Elongation at Break, % 36
7.8
Poisson's Ratio 0.3
0.36
Shear Modulus, GPa 40
34
Tensile Strength: Ultimate (UTS), MPa 380
190
Tensile Strength: Yield (Proof), MPa 150
130

Thermal Properties

Latent Heat of Fusion, J/g 170
160
Maximum Temperature: Mechanical, °C 120
130
Melting Completion (Liquidus), °C 900
870
Melting Onset (Solidus), °C 890
790
Specific Heat Capacity, J/kg-K 390
330
Thermal Expansion, µm/m-K 21
20

Otherwise Unclassified Properties

Base Metal Price, % relative 23
29
Density, g/cm3 8.0
9.2
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 47
48
Embodied Water, L/kg 330
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
14
Resilience: Unit (Modulus of Resilience), kJ/m3 100
97
Stiffness to Weight: Axial, points 7.2
5.5
Stiffness to Weight: Bending, points 20
16
Strength to Weight: Axial, points 13
5.8
Strength to Weight: Bending, points 15
8.1
Thermal Shock Resistance, points 13
7.6

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Copper (Cu), % 57 to 61
72 to 79
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0 to 0.050
18 to 22
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0.25 to 1.0
4.5 to 6.5
Zinc (Zn), % 37.5 to 42.8
0 to 1.0
Residuals, % 0
0 to 1.3