MakeItFrom.com
Menu (ESC)

C48500 Brass vs. EN 1.4526 Stainless Steel

C48500 brass belongs to the copper alloys classification, while EN 1.4526 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C48500 brass and the bottom bar is EN 1.4526 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 13 to 40
25
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
77
Shear Strength, MPa 250 to 300
340
Tensile Strength: Ultimate (UTS), MPa 400 to 500
540
Tensile Strength: Yield (Proof), MPa 160 to 320
330

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
880
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
30
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 46
41
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56 to 140
120
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
280
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
19
Strength to Weight: Bending, points 15 to 17
19
Thermal Diffusivity, mm2/s 38
8.1
Thermal Shock Resistance, points 13 to 17
19

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0 to 0.1
77.4 to 83.1
Lead (Pb), % 1.3 to 2.2
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.4
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 34.3 to 39.2
0
Residuals, % 0 to 0.4
0