MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. EN 1.4935 Stainless Steel

C50100 bronze belongs to the copper alloys classification, while EN 1.4935 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is EN 1.4935 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 40
16 to 18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 180
480 to 540
Tensile Strength: Ultimate (UTS), MPa 270
780 to 880
Tensile Strength: Yield (Proof), MPa 82
570 to 670

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
740
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 230
24
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 55
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 42
42
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
130
Resilience: Unit (Modulus of Resilience), kJ/m3 29
830 to 1160
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.3
28 to 31
Strength to Weight: Bending, points 10
24 to 26
Thermal Diffusivity, mm2/s 66
6.5
Thermal Shock Resistance, points 9.5
27 to 30

Alloy Composition

Carbon (C), % 0
0.17 to 0.24
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 98.6 to 99.49
0
Iron (Fe), % 0 to 0.050
83 to 86.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.3 to 0.8
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
0.3 to 0.8
Phosphorus (P), % 0.010 to 0.050
0 to 0.025
Silicon (Si), % 0
0.1 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 0.8
0
Tungsten (W), % 0
0.4 to 0.6
Vanadium (V), % 0
0.2 to 0.35
Residuals, % 0 to 0.5
0