MakeItFrom.com
Menu (ESC)

C51000 Bronze vs. S21640 Stainless Steel

C51000 bronze belongs to the copper alloys classification, while S21640 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C51000 bronze and the bottom bar is S21640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.7 to 64
46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
78
Shear Strength, MPa 250 to 460
520
Tensile Strength: Ultimate (UTS), MPa 330 to 780
740
Tensile Strength: Yield (Proof), MPa 130 to 750
350

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 190
940
Melting Completion (Liquidus), °C 1050
1430
Melting Onset (Solidus), °C 960
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 77
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 18
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 33
17
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.1
3.6
Embodied Energy, MJ/kg 50
51
Embodied Water, L/kg 350
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.0 to 490
280
Resilience: Unit (Modulus of Resilience), kJ/m3 75 to 2490
300
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 25
27
Strength to Weight: Bending, points 12 to 21
23
Thermal Diffusivity, mm2/s 23
4.0
Thermal Shock Resistance, points 12 to 28
16

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 92.9 to 95.5
0
Iron (Fe), % 0 to 0.1
63 to 74.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
3.5 to 6.5
Molybdenum (Mo), % 0
0.5 to 2.0
Nickel (Ni), % 0
4.0 to 6.5
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0
0.080 to 0.3
Phosphorus (P), % 0.030 to 0.35
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 4.5 to 5.8
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0