MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. C90400 Bronze

Both C51100 bronze and C90400 bronze are copper alloys. They have a moderately high 92% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.5 to 50
24
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
41
Tensile Strength: Ultimate (UTS), MPa 330 to 720
310
Tensile Strength: Yield (Proof), MPa 93 to 700
180

Thermal Properties

Latent Heat of Fusion, J/g 200
190
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 1060
990
Melting Onset (Solidus), °C 970
850
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 84
75
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
12
Electrical Conductivity: Equal Weight (Specific), % IACS 20
12

Otherwise Unclassified Properties

Base Metal Price, % relative 32
34
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 3.0
3.5
Embodied Energy, MJ/kg 48
56
Embodied Water, L/kg 340
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
65
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
150
Stiffness to Weight: Axial, points 7.1
7.0
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 10 to 22
10
Strength to Weight: Bending, points 12 to 20
12
Thermal Diffusivity, mm2/s 25
23
Thermal Shock Resistance, points 12 to 26
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 93.8 to 96.5
86 to 89
Iron (Fe), % 0 to 0.1
0 to 0.4
Lead (Pb), % 0 to 0.050
0 to 0.090
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0.030 to 0.35
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 3.5 to 4.9
7.5 to 8.5
Zinc (Zn), % 0 to 0.3
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7