MakeItFrom.com
Menu (ESC)

C52400 Bronze vs. C99400 Brass

Both C52400 bronze and C99400 brass are copper alloys. They have 90% of their average alloy composition in common. There are 22 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C52400 bronze and the bottom bar is C99400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
44
Tensile Strength: Ultimate (UTS), MPa 450 to 880
460 to 550

Thermal Properties

Latent Heat of Fusion, J/g 190
230
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 1000
1070
Melting Onset (Solidus), °C 840
1020
Specific Heat Capacity, J/kg-K 370
400
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
17
Electrical Conductivity: Equal Weight (Specific), % IACS 11
17

Otherwise Unclassified Properties

Base Metal Price, % relative 35
30
Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 58
45
Embodied Water, L/kg 390
310

Common Calculations

Stiffness to Weight: Axial, points 6.9
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 14 to 28
15 to 17
Strength to Weight: Bending, points 15 to 23
15 to 17
Thermal Shock Resistance, points 17 to 32
16 to 19

Alloy Composition

Aluminum (Al), % 0
0.5 to 2.0
Copper (Cu), % 87.8 to 91
83.5 to 96.5
Iron (Fe), % 0 to 0.1
1.0 to 3.0
Lead (Pb), % 0 to 0.050
0 to 0.25
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
1.0 to 3.5
Phosphorus (P), % 0.030 to 0.35
0
Silicon (Si), % 0
0.5 to 2.0
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.2
0.5 to 5.0
Residuals, % 0
0 to 0.3