MakeItFrom.com
Menu (ESC)

C53800 Bronze vs. EN 1.4724 Stainless Steel

C53800 bronze belongs to the copper alloys classification, while EN 1.4724 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C53800 bronze and the bottom bar is EN 1.4724 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.3
16
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
75
Shear Strength, MPa 470
340
Tensile Strength: Ultimate (UTS), MPa 830
550
Tensile Strength: Yield (Proof), MPa 660
280

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 160
850
Melting Completion (Liquidus), °C 980
1430
Melting Onset (Solidus), °C 800
1390
Specific Heat Capacity, J/kg-K 360
490
Thermal Conductivity, W/m-K 61
21
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 37
7.0
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.9
2.0
Embodied Energy, MJ/kg 64
28
Embodied Water, L/kg 420
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
73
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
210
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 26
20
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 19
5.6
Thermal Shock Resistance, points 31
19

Alloy Composition

Aluminum (Al), % 0
0.7 to 1.2
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 85.1 to 86.5
0
Iron (Fe), % 0 to 0.030
82.2 to 86.6
Lead (Pb), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.060
0 to 1.0
Nickel (Ni), % 0 to 0.030
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0.7 to 1.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 13.1 to 13.9
0
Zinc (Zn), % 0 to 0.12
0
Residuals, % 0 to 0.2
0