MakeItFrom.com
Menu (ESC)

C61000 Bronze vs. EN 1.0034 Steel

C61000 bronze belongs to the copper alloys classification, while EN 1.0034 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61000 bronze and the bottom bar is EN 1.0034 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 29 to 50
9.0 to 32
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 280 to 300
220 to 230
Tensile Strength: Ultimate (UTS), MPa 390 to 460
340 to 380
Tensile Strength: Yield (Proof), MPa 150 to 190
180 to 280

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 990
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 69
53
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 16
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 49
18
Embodied Water, L/kg 370
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 160
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 160
84 to 210
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 15
12 to 13
Strength to Weight: Bending, points 14 to 16
14 to 15
Thermal Diffusivity, mm2/s 19
14
Thermal Shock Resistance, points 14 to 16
11 to 12

Alloy Composition

Aluminum (Al), % 6.0 to 8.5
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 90.2 to 94
0
Iron (Fe), % 0 to 0.5
98.7 to 100
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.7
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0