MakeItFrom.com
Menu (ESC)

C61400 Bronze vs. C87800 Brass

Both C61400 bronze and C87800 brass are copper alloys. They have 83% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C61400 bronze and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 34 to 40
25
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 540 to 570
590
Tensile Strength: Yield (Proof), MPa 220 to 270
350

Thermal Properties

Latent Heat of Fusion, J/g 220
260
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1050
920
Melting Onset (Solidus), °C 1040
820
Specific Heat Capacity, J/kg-K 420
410
Thermal Conductivity, W/m-K 67
28
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 15
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
27
Density, g/cm3 8.5
8.3
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 48
44
Embodied Water, L/kg 360
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160 to 170
130
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 310
540
Stiffness to Weight: Axial, points 7.5
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 18 to 19
20
Strength to Weight: Bending, points 17 to 18
19
Thermal Diffusivity, mm2/s 19
8.3
Thermal Shock Resistance, points 18 to 20
21

Alloy Composition

Aluminum (Al), % 6.0 to 8.0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 86 to 92.5
80 to 84.2
Iron (Fe), % 1.5 to 3.5
0 to 0.15
Lead (Pb), % 0 to 0.010
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 0.15
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.015
0 to 0.010
Silicon (Si), % 0
3.8 to 4.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0 to 1.0
12 to 16
Residuals, % 0
0 to 0.5