MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. EN 1.4865 Stainless Steel

C61500 bronze belongs to the copper alloys classification, while EN 1.4865 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is EN 1.4865 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
6.8
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 480 to 970
470
Tensile Strength: Yield (Proof), MPa 150 to 720
250

Thermal Properties

Latent Heat of Fusion, J/g 220
320
Maximum Temperature: Mechanical, °C 220
1020
Melting Completion (Liquidus), °C 1040
1380
Melting Onset (Solidus), °C 1030
1330
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 58
12
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 13
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
33
Density, g/cm3 8.4
8.0
Embodied Carbon, kg CO2/kg material 3.2
5.8
Embodied Energy, MJ/kg 52
81
Embodied Water, L/kg 380
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
27
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
160
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 32
16
Strength to Weight: Bending, points 16 to 26
17
Thermal Diffusivity, mm2/s 16
3.1
Thermal Shock Resistance, points 17 to 34
11

Alloy Composition

Aluminum (Al), % 7.7 to 8.3
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 89 to 90.5
0
Iron (Fe), % 0
34.4 to 44.7
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 1.8 to 2.2
36 to 39
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0