MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. EN 1.4724 Stainless Steel

C61800 bronze belongs to the copper alloys classification, while EN 1.4724 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is EN 1.4724 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 26
16
Fatigue Strength, MPa 190
170
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
75
Shear Strength, MPa 310
340
Tensile Strength: Ultimate (UTS), MPa 740
550
Tensile Strength: Yield (Proof), MPa 310
280

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 220
850
Melting Completion (Liquidus), °C 1050
1430
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 440
490
Thermal Conductivity, W/m-K 64
21
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 28
7.0
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.0
Embodied Energy, MJ/kg 52
28
Embodied Water, L/kg 390
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
73
Resilience: Unit (Modulus of Resilience), kJ/m3 420
210
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 18
5.6
Thermal Shock Resistance, points 26
19

Alloy Composition

Aluminum (Al), % 8.5 to 11
0.7 to 1.2
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 86.9 to 91
0
Iron (Fe), % 0.5 to 1.5
82.2 to 86.6
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0.7 to 1.4
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0