MakeItFrom.com
Menu (ESC)

C62400 Bronze vs. AISI 416 Stainless Steel

C62400 bronze belongs to the copper alloys classification, while AISI 416 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C62400 bronze and the bottom bar is AISI 416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 14
13 to 31
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 420 to 440
340 to 480
Tensile Strength: Ultimate (UTS), MPa 690 to 730
510 to 800
Tensile Strength: Yield (Proof), MPa 270 to 350
290 to 600

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 220
680
Melting Completion (Liquidus), °C 1040
1530
Melting Onset (Solidus), °C 1030
1480
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 59
30
Thermal Expansion, µm/m-K 18
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 13
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 27
7.0
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.2
1.9
Embodied Energy, MJ/kg 53
27
Embodied Water, L/kg 400
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 77
98 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 320 to 550
220 to 940
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 23 to 25
18 to 29
Strength to Weight: Bending, points 21 to 22
18 to 25
Thermal Diffusivity, mm2/s 16
8.1
Thermal Shock Resistance, points 25 to 26
19 to 30

Alloy Composition

Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 82.8 to 88
0
Iron (Fe), % 2.0 to 4.5
83.2 to 87.9
Manganese (Mn), % 0 to 0.3
0 to 1.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Tin (Sn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0