MakeItFrom.com
Menu (ESC)

C62500 Bronze vs. S44401 Stainless Steel

C62500 bronze belongs to the copper alloys classification, while S44401 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C62500 bronze and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 1.0
21
Fatigue Strength, MPa 460
200
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
78
Shear Strength, MPa 410
300
Tensile Strength: Ultimate (UTS), MPa 690
480
Tensile Strength: Yield (Proof), MPa 410
300

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 230
930
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 47
22
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 26
12
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 3.3
2.9
Embodied Energy, MJ/kg 55
40
Embodied Water, L/kg 410
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0
90
Resilience: Unit (Modulus of Resilience), kJ/m3 750
230
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
17
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 13
5.9
Thermal Shock Resistance, points 24
17

Alloy Composition

Aluminum (Al), % 12.5 to 13.5
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 78.5 to 84
0
Iron (Fe), % 3.5 to 5.5
75.1 to 80.6
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8
Residuals, % 0 to 0.5
0