MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. SAE-AISI 1140 Steel

C63020 bronze belongs to the copper alloys classification, while SAE-AISI 1140 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C63020 bronze and the bottom bar is SAE-AISI 1140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.8
14 to 18
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 44
72
Shear Strength, MPa 600
370 to 420
Tensile Strength: Ultimate (UTS), MPa 1020
600 to 700
Tensile Strength: Yield (Proof), MPa 740
340 to 570

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1020
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 40
51
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
1.4
Embodied Energy, MJ/kg 58
18
Embodied Water, L/kg 390
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
89 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
310 to 870
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 34
21 to 25
Strength to Weight: Bending, points 27
20 to 22
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 35
18 to 21

Alloy Composition

Aluminum (Al), % 10 to 11
0
Carbon (C), % 0
0.37 to 0.44
Chromium (Cr), % 0 to 0.050
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
0
Iron (Fe), % 4.0 to 5.5
98.4 to 98.9
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0.7 to 1.0
Nickel (Ni), % 4.2 to 6.0
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0.080 to 0.13
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0