MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. S44536 Stainless Steel

C63020 bronze belongs to the copper alloys classification, while S44536 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C63020 bronze and the bottom bar is S44536 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.8
22
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 44
78
Shear Strength, MPa 600
290
Tensile Strength: Ultimate (UTS), MPa 1020
460
Tensile Strength: Yield (Proof), MPa 740
280

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 230
990
Melting Completion (Liquidus), °C 1070
1440
Melting Onset (Solidus), °C 1020
1390
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 40
21
Thermal Expansion, µm/m-K 18
11

Otherwise Unclassified Properties

Base Metal Price, % relative 29
13
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 58
41
Embodied Water, L/kg 390
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
89
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
200
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 34
17
Strength to Weight: Bending, points 27
17
Thermal Diffusivity, mm2/s 11
5.6
Thermal Shock Resistance, points 35
16

Alloy Composition

Aluminum (Al), % 10 to 11
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.050
20 to 23
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
0
Iron (Fe), % 4.0 to 5.5
72.8 to 80
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 4.2 to 6.0
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.8
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0 to 0.8
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0