MakeItFrom.com
Menu (ESC)

C63200 Bronze vs. EN 1.4982 Stainless Steel

C63200 bronze belongs to the copper alloys classification, while EN 1.4982 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C63200 bronze and the bottom bar is EN 1.4982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 17 to 18
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 390 to 440
490
Tensile Strength: Ultimate (UTS), MPa 640 to 710
750
Tensile Strength: Yield (Proof), MPa 310 to 350
570

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 230
860
Melting Completion (Liquidus), °C 1060
1430
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 35
13
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 29
22
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.4
4.9
Embodied Energy, MJ/kg 55
71
Embodied Water, L/kg 380
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 99
190
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 510
830
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 21 to 24
27
Strength to Weight: Bending, points 20 to 21
23
Thermal Diffusivity, mm2/s 9.6
3.4
Thermal Shock Resistance, points 22 to 24
17

Alloy Composition

Aluminum (Al), % 8.7 to 9.5
0
Boron (B), % 0
0.0030 to 0.0090
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 78.8 to 82.6
0
Iron (Fe), % 3.5 to 4.3
61.8 to 69.7
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 1.2 to 2.0
5.5 to 7.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 4.0 to 4.8
9.0 to 11
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0.15 to 0.4
Residuals, % 0 to 0.5
0