MakeItFrom.com
Menu (ESC)

C64700 Bronze vs. EN 1.4560 Stainless Steel

C64700 bronze belongs to the copper alloys classification, while EN 1.4560 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64700 bronze and the bottom bar is EN 1.4560 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.0
50
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 390
390
Tensile Strength: Ultimate (UTS), MPa 660
550
Tensile Strength: Yield (Proof), MPa 560
190

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 200
940
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1030
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 210
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 38
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
15
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 43
42
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
220
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
92
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 21
20
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 59
4.0
Thermal Shock Resistance, points 24
12

Alloy Composition

Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0
18 to 19
Copper (Cu), % 95.8 to 98
1.5 to 2.0
Iron (Fe), % 0 to 0.1
66.8 to 71
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
1.5 to 2.0
Nickel (Ni), % 1.6 to 2.2
8.0 to 9.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0