MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. ACI-ASTM CK3MCuN Steel

C64800 bronze belongs to the copper alloys classification, while ACI-ASTM CK3MCuN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is ACI-ASTM CK3MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
80
Tensile Strength: Ultimate (UTS), MPa 640
620
Tensile Strength: Yield (Proof), MPa 630
290

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 200
1090
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1030
1350
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 260
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 33
29
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.7
5.6
Embodied Energy, MJ/kg 43
76
Embodied Water, L/kg 310
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
200
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
210
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 20
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 75
3.2
Thermal Shock Resistance, points 23
14

Alloy Composition

Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0 to 0.090
19.5 to 20.5
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0.5 to 1.0
Iron (Fe), % 0 to 1.0
49.5 to 56.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.5
17.5 to 19.5
Nitrogen (N), % 0
0.18 to 0.24
Phosphorus (P), % 0 to 0.5
0 to 0.045
Silicon (Si), % 0.2 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0