MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. EN 1.4470 Stainless Steel

C64800 bronze belongs to the copper alloys classification, while EN 1.4470 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is EN 1.4470 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0
23
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
80
Tensile Strength: Ultimate (UTS), MPa 640
680
Tensile Strength: Yield (Proof), MPa 630
480

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 200
1060
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
18
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
17
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 43
49
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
570
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 75
4.8
Thermal Shock Resistance, points 23
18

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.090
21 to 23
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
63.7 to 71.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.5
4.5 to 6.5
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0 to 0.5
0 to 0.035
Silicon (Si), % 0.2 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0