MakeItFrom.com
Menu (ESC)

C65100 Bronze vs. Grade 9 Titanium

C65100 bronze belongs to the copper alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C65100 bronze and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.4 to 50
11 to 17
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
40
Shear Strength, MPa 200 to 350
430 to 580
Tensile Strength: Ultimate (UTS), MPa 280 to 560
700 to 960
Tensile Strength: Yield (Proof), MPa 95 to 440
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 230
410
Maximum Temperature: Mechanical, °C 200
330
Melting Completion (Liquidus), °C 1060
1640
Melting Onset (Solidus), °C 1030
1590
Specific Heat Capacity, J/kg-K 390
550
Thermal Conductivity, W/m-K 57
8.1
Thermal Expansion, µm/m-K 18
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
37
Density, g/cm3 8.8
4.5
Embodied Carbon, kg CO2/kg material 2.6
36
Embodied Energy, MJ/kg 41
580
Embodied Water, L/kg 300
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 39 to 820
1380 to 3220
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 8.7 to 18
43 to 60
Strength to Weight: Bending, points 11 to 17
39 to 48
Thermal Diffusivity, mm2/s 16
3.3
Thermal Shock Resistance, points 9.5 to 19
52 to 71

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 94.5 to 99.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.8
0 to 0.25
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.7
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Silicon (Si), % 0.8 to 2.0
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0
0 to 0.4