MakeItFrom.com
Menu (ESC)

C66200 Brass vs. EN 1.4935 Stainless Steel

C66200 brass belongs to the copper alloys classification, while EN 1.4935 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is EN 1.4935 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.0 to 15
16 to 18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 270 to 300
480 to 540
Tensile Strength: Ultimate (UTS), MPa 450 to 520
780 to 880
Tensile Strength: Yield (Proof), MPa 410 to 480
570 to 670

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 180
740
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 150
24
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 36
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.0
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 43
42
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
130
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
830 to 1160
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
28 to 31
Strength to Weight: Bending, points 15 to 16
24 to 26
Thermal Diffusivity, mm2/s 45
6.5
Thermal Shock Resistance, points 16 to 18
27 to 30

Alloy Composition

Carbon (C), % 0
0.17 to 0.24
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
83 to 86.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.3 to 0.8
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0.3 to 1.0
0.3 to 0.8
Phosphorus (P), % 0.050 to 0.2
0 to 0.025
Silicon (Si), % 0
0.1 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.2 to 0.7
0
Tungsten (W), % 0
0.4 to 0.6
Vanadium (V), % 0
0.2 to 0.35
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0

Comparable Variants