MakeItFrom.com
Menu (ESC)

C66200 Brass vs. S21640 Stainless Steel

C66200 brass belongs to the copper alloys classification, while S21640 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is S21640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.0 to 15
46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
78
Shear Strength, MPa 270 to 300
520
Tensile Strength: Ultimate (UTS), MPa 450 to 520
740
Tensile Strength: Yield (Proof), MPa 410 to 480
350

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
940
Melting Completion (Liquidus), °C 1070
1430
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 36
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
17
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 43
51
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
280
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
300
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
27
Strength to Weight: Bending, points 15 to 16
23
Thermal Diffusivity, mm2/s 45
4.0
Thermal Shock Resistance, points 16 to 18
16

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
63 to 74.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
3.5 to 6.5
Molybdenum (Mo), % 0
0.5 to 2.0
Nickel (Ni), % 0.3 to 1.0
4.0 to 6.5
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0
0.080 to 0.3
Phosphorus (P), % 0.050 to 0.2
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0