MakeItFrom.com
Menu (ESC)

C66900 Brass vs. EN 1.8881 Steel

C66900 brass belongs to the copper alloys classification, while EN 1.8881 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C66900 brass and the bottom bar is EN 1.8881 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.1 to 26
16
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 45
73
Shear Strength, MPa 290 to 440
510
Tensile Strength: Ultimate (UTS), MPa 460 to 770
830
Tensile Strength: Yield (Proof), MPa 330 to 760
710

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 150
420
Melting Completion (Liquidus), °C 860
1460
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.8
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
3.7
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.9
Embodied Energy, MJ/kg 46
26
Embodied Water, L/kg 310
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 200
120
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 2450
1320
Stiffness to Weight: Axial, points 8.1
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15 to 26
29
Strength to Weight: Bending, points 16 to 23
25
Thermal Shock Resistance, points 14 to 23
24

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 1.5
Copper (Cu), % 62.5 to 64.5
0 to 0.3
Iron (Fe), % 0 to 0.25
91.9 to 100
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 11.5 to 12.5
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.0080
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zinc (Zn), % 22.5 to 26
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.2
0